Deep learning-enabled multi-organ segmentation in whole-body mouse scans
Organ segmentation of whole-body mouse images is essential for quantitative analysis, but is tedious and error-prone. Here the authors develop a deep learning pipeline to segment major organs and the skeleton in volumetric whole-body scans in less than a second, and present probability maps and unce...
Guardado en:
Autores principales: | Oliver Schoppe, Chenchen Pan, Javier Coronel, Hongcheng Mai, Zhouyi Rong, Mihail Ivilinov Todorov, Annemarie Müskes, Fernando Navarro, Hongwei Li, Ali Ertürk, Bjoern H. Menze |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/beaa83df319f4b3a87f854ede0507b79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In silico whole genome association scan for murine prepulse inhibition.
por: Bradley Todd Webb, et al.
Publicado: (2009) -
Deep generative models for automated muscle segmentation in computed tomography scanning.
por: Daisuke Nishiyama, et al.
Publicado: (2021) -
Brief segments of neurophysiological activity enable individual differentiation
por: Jason da Silva Castanheira, et al.
Publicado: (2021) -
Megahertz scan rates enabled by optical sampling by repetition-rate tuning
por: D. Bajek, et al.
Publicado: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
por: C. A. Neves, et al.
Publicado: (2021)