Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers

Abstract We complete the program of [1] about perturbative approaches for N $$ \mathcal{N} $$ = 2 superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute W...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francesco Galvagno, Michelangelo Preti
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/bec0e676206a42d1a86e13f71cc318f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bec0e676206a42d1a86e13f71cc318f7
record_format dspace
spelling oai:doaj.org-article:bec0e676206a42d1a86e13f71cc318f72021-11-14T12:42:14ZWilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers10.1007/JHEP11(2021)0231029-8479https://doaj.org/article/bec0e676206a42d1a86e13f71cc318f72021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)023https://doaj.org/toc/1029-8479Abstract We complete the program of [1] about perturbative approaches for N $$ \mathcal{N} $$ = 2 superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of AdS 5 × S 5 with the aim of testing possible holographic perspectives of quiver theories in N $$ \mathcal{N} $$ = 2.Francesco GalvagnoMichelangelo PretiSpringerOpenarticleMatrix ModelsSupersymmetric Gauge TheoryWilson, ’t Hooft and Polyakov loopsConformal Field TheoryNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-46 (2021)
institution DOAJ
collection DOAJ
language EN
topic Matrix Models
Supersymmetric Gauge Theory
Wilson, ’t Hooft and Polyakov loops
Conformal Field Theory
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Matrix Models
Supersymmetric Gauge Theory
Wilson, ’t Hooft and Polyakov loops
Conformal Field Theory
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Francesco Galvagno
Michelangelo Preti
Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
description Abstract We complete the program of [1] about perturbative approaches for N $$ \mathcal{N} $$ = 2 superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of AdS 5 × S 5 with the aim of testing possible holographic perspectives of quiver theories in N $$ \mathcal{N} $$ = 2.
format article
author Francesco Galvagno
Michelangelo Preti
author_facet Francesco Galvagno
Michelangelo Preti
author_sort Francesco Galvagno
title Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
title_short Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
title_full Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
title_fullStr Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
title_full_unstemmed Wilson loop correlators in N $$ \mathcal{N} $$ = 2 superconformal quivers
title_sort wilson loop correlators in n $$ \mathcal{n} $$ = 2 superconformal quivers
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/bec0e676206a42d1a86e13f71cc318f7
work_keys_str_mv AT francescogalvagno wilsonloopcorrelatorsinnmathcaln2superconformalquivers
AT michelangelopreti wilsonloopcorrelatorsinnmathcaln2superconformalquivers
_version_ 1718429071826747392