Survey on real forms of the complex A2(2)-Toda equation and surface theory

The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result hol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dorfmeister Josef F., Freyn Walter, Kobayashi Shimpei, Wang Erxiao
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bed39c917e9f43cd9870c4b38b11970c
record_format dspace
spelling oai:doaj.org-article:bed39c917e9f43cd9870c4b38b11970c2021-12-02T17:14:47ZSurvey on real forms of the complex A2(2)-Toda equation and surface theory2300-744310.1515/coma-2019-0011https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0011https://doaj.org/toc/2300-7443The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].Dorfmeister Josef F.Freyn WalterKobayashi ShimpeiWang ErxiaoDe Gruyterarticleminimal lagrangian surfacesaffine spheresloop groupsreal formstzitzéica equationsprimary 53a1053b3058d10secondary 53c42MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 194-227 (2019)
institution DOAJ
collection DOAJ
language EN
topic minimal lagrangian surfaces
affine spheres
loop groups
real forms
tzitzéica equations
primary 53a10
53b30
58d10
secondary 53c42
Mathematics
QA1-939
spellingShingle minimal lagrangian surfaces
affine spheres
loop groups
real forms
tzitzéica equations
primary 53a10
53b30
58d10
secondary 53c42
Mathematics
QA1-939
Dorfmeister Josef F.
Freyn Walter
Kobayashi Shimpei
Wang Erxiao
Survey on real forms of the complex A2(2)-Toda equation and surface theory
description The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].
format article
author Dorfmeister Josef F.
Freyn Walter
Kobayashi Shimpei
Wang Erxiao
author_facet Dorfmeister Josef F.
Freyn Walter
Kobayashi Shimpei
Wang Erxiao
author_sort Dorfmeister Josef F.
title Survey on real forms of the complex A2(2)-Toda equation and surface theory
title_short Survey on real forms of the complex A2(2)-Toda equation and surface theory
title_full Survey on real forms of the complex A2(2)-Toda equation and surface theory
title_fullStr Survey on real forms of the complex A2(2)-Toda equation and surface theory
title_full_unstemmed Survey on real forms of the complex A2(2)-Toda equation and surface theory
title_sort survey on real forms of the complex a2(2)-toda equation and surface theory
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c
work_keys_str_mv AT dorfmeisterjoseff surveyonrealformsofthecomplexa22todaequationandsurfacetheory
AT freynwalter surveyonrealformsofthecomplexa22todaequationandsurfacetheory
AT kobayashishimpei surveyonrealformsofthecomplexa22todaequationandsurfacetheory
AT wangerxiao surveyonrealformsofthecomplexa22todaequationandsurfacetheory
_version_ 1718381283544924160