Survey on real forms of the complex A2(2)-Toda equation and surface theory
The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result hol...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bed39c917e9f43cd9870c4b38b11970c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bed39c917e9f43cd9870c4b38b11970c2021-12-02T17:14:47ZSurvey on real forms of the complex A2(2)-Toda equation and surface theory2300-744310.1515/coma-2019-0011https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0011https://doaj.org/toc/2300-7443The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].Dorfmeister Josef F.Freyn WalterKobayashi ShimpeiWang ErxiaoDe Gruyterarticleminimal lagrangian surfacesaffine spheresloop groupsreal formstzitzéica equationsprimary 53a1053b3058d10secondary 53c42MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 194-227 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
minimal lagrangian surfaces affine spheres loop groups real forms tzitzéica equations primary 53a10 53b30 58d10 secondary 53c42 Mathematics QA1-939 |
spellingShingle |
minimal lagrangian surfaces affine spheres loop groups real forms tzitzéica equations primary 53a10 53b30 58d10 secondary 53c42 Mathematics QA1-939 Dorfmeister Josef F. Freyn Walter Kobayashi Shimpei Wang Erxiao Survey on real forms of the complex A2(2)-Toda equation and surface theory |
description |
The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8]. |
format |
article |
author |
Dorfmeister Josef F. Freyn Walter Kobayashi Shimpei Wang Erxiao |
author_facet |
Dorfmeister Josef F. Freyn Walter Kobayashi Shimpei Wang Erxiao |
author_sort |
Dorfmeister Josef F. |
title |
Survey on real forms of the complex A2(2)-Toda equation and surface theory |
title_short |
Survey on real forms of the complex A2(2)-Toda equation and surface theory |
title_full |
Survey on real forms of the complex A2(2)-Toda equation and surface theory |
title_fullStr |
Survey on real forms of the complex A2(2)-Toda equation and surface theory |
title_full_unstemmed |
Survey on real forms of the complex A2(2)-Toda equation and surface theory |
title_sort |
survey on real forms of the complex a2(2)-toda equation and surface theory |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c |
work_keys_str_mv |
AT dorfmeisterjoseff surveyonrealformsofthecomplexa22todaequationandsurfacetheory AT freynwalter surveyonrealformsofthecomplexa22todaequationandsurfacetheory AT kobayashishimpei surveyonrealformsofthecomplexa22todaequationandsurfacetheory AT wangerxiao surveyonrealformsofthecomplexa22todaequationandsurfacetheory |
_version_ |
1718381283544924160 |