Survey on real forms of the complex A2(2)-Toda equation and surface theory
The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result hol...
Enregistré dans:
Auteurs principaux: | Dorfmeister Josef F., Freyn Walter, Kobayashi Shimpei, Wang Erxiao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
par: Ohnita Yoshihiro
Publié: (2019) -
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
par: Miyaoka Reiko, et autres
Publié: (2019) -
G2-metrics arising from non-integrable special Lagrangian fibrations
par: Chihara Ryohei
Publié: (2019) -
Contact manifolds, Lagrangian Grassmannians and PDEs
par: Eshkobilov Olimjon, et autres
Publié: (2018) -
Deformation classes in generalized Kähler geometry
par: Gibson Matthew, et autres
Publié: (2020)