Survey on real forms of the complex A2(2)-Toda equation and surface theory
The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result hol...
Guardado en:
Autores principales: | Dorfmeister Josef F., Freyn Walter, Kobayashi Shimpei, Wang Erxiao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bed39c917e9f43cd9870c4b38b11970c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
por: Ohnita Yoshihiro
Publicado: (2019) -
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
por: Miyaoka Reiko, et al.
Publicado: (2019) -
G2-metrics arising from non-integrable special Lagrangian fibrations
por: Chihara Ryohei
Publicado: (2019) -
Contact manifolds, Lagrangian Grassmannians and PDEs
por: Eshkobilov Olimjon, et al.
Publicado: (2018) -
Deformation classes in generalized Kähler geometry
por: Gibson Matthew, et al.
Publicado: (2020)