Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-operative diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years for the evaluation of histopathological features, as it can provide a definitive diagnosis between IDC and benign les...
Enregistré dans:
Auteurs principaux: | Fahdi Kanavati, Masayuki Tsuneki |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bedf7aee21894d6381efdee2e9c6cae4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning
par: Masayuki Tsuneki, et autres
Publié: (2021) -
Self supervised contrastive learning for digital histopathology
par: Ozan Ciga, et autres
Publié: (2022) -
Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning
par: Alina Ciocarlan, et autres
Publié: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
par: Bruch Roman, et autres
Publié: (2020) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
par: Matej Gazda, et autres
Publié: (2021)