TEPAPA: a novel in silico feature learning pipeline for mining prognostic and associative factors from text-based electronic medical records
Abstract Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative covariates from unstructured clinical narratives, we have built a novel computat...
Guardado en:
Autores principales: | Frank Po-Yen Lin, Adrian Pokorny, Christina Teng, Richard J. Epstein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/beee489bea1846b2bde036d07648f143 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Treosulfan-induced myalgia in pediatric hematopoietic stem cell transplantation identified by an electronic health record text mining tool
por: M. Y. Eileen C. van der Stoep, et al.
Publicado: (2021) -
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021) -
Getting started in text mining.
por: K Bretonnel Cohen, et al.
Publicado: (2008) -
Combining free text and structured electronic medical record entries to detect acute respiratory infections.
por: Sylvain DeLisle, et al.
Publicado: (2010) -
In-silico research of the influence of gas injection into the subsea crude oil pipeline on the paraffin solid phase deposition
por: Wójcikowski Artur, et al.
Publicado: (2021)