Long-term cross calibration of HJ-1A CCD1 and Terra MODIS reflective solar bands

Abstract Since its launch on September 6, 2008, HJ-1A has been in the orbit for 13 years. The CCD1 sensor on the HJ-1A has four reflected solar bands. Since the calibration frequency is limited to the annual site calibration, cross-calibration is an effective method to improve the calibration freque...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Li Liu, Tingting Shi, Hailiang Gao, Xuewen Zhang, Qijin Han, Xinkai Hu
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/bef237b54af84577bb92e2366d3f4024
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Since its launch on September 6, 2008, HJ-1A has been in the orbit for 13 years. The CCD1 sensor on the HJ-1A has four reflected solar bands. Since the calibration frequency is limited to the annual site calibration, cross-calibration is an effective method to improve the calibration frequency. In this paper, we use 420 image pairs of HJ-1A CCD1 and Terra MODIS over the Dunhuang test site for gains calculation, where we take MODIS as the reference sensor. The spectral band adjustment factors (SBAFs) for cross-calibration are then calculated to compensate for the spectral mismatch. The cross-calibration results are also validated by the field calibration results. From 2008 to 2019, a total of six campaigns have been cross-calibrated on the same day. The gain difference between the site calibration and cross-calibration is less than 3%. The long-term cross-calibration results further indicate that due to the adjustment of HJ-1A CCD gain state in October 2009, an abrupt change occurred 405 days after launch. After 12 years of on-orbit operation, the attenuation rate has reached 23.51%, 21.89%, 8.11%, and 13.37%, respectively by the end of 2019 based on the cross-calibration results.