An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice
Abstract With progress of genetic sequencing technology, plant genomics has experienced rapid development and subsequently triggered the progress of plant phenomics. In this study, a high-throughput hyperspectral imaging system (HHIS) was developed to obtain 1,540 hyperspectral indices at whole-plan...
Guardado en:
Autores principales: | Hui Feng, Zilong Guo, Wanneng Yang, Chenglong Huang, Guoxing Chen, Wei Fang, Xiong Xiong, Hongyu Zhang, Gongwei Wang, Lizhong Xiong, Qian Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf18294cae7b41b1b75dedaa86963dfe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential
por: Jing Su, et al.
Publicado: (2021) -
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
por: Anhong Tian, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021)