Noise robustness of persistent homology on greyscale images, across filtrations and signatures.
Topological data analysis is a recent and fast growing field that approaches the analysis of datasets using techniques from (algebraic) topology. Its main tool, persistent homology (PH), has seen a notable increase in applications in the last decade. Often cited as the most favourable property of PH...
Guardado en:
Autores principales: | Renata Turkeš, Jannes Nys, Tim Verdonck, Steven Latré |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf20c915b55b4b1882e644bda6954ef5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A subset of lung cancer cases shows robust signs of homologous recombination deficiency associated genomic mutational signatures
por: Miklos Diossy, et al.
Publicado: (2021) -
Flow estimation solely from image data through persistent homology analysis
por: Anna Suzuki, et al.
Publicado: (2021) -
Higher-order structure of polymer melt described by persistent homology
por: Yohei Shimizu, et al.
Publicado: (2021) -
Persistent homology as a new method of the assessment of heart rate variability.
por: Grzegorz Graff, et al.
Publicado: (2021) -
Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Jacob Townsend, et al.
Publicado: (2020)