Machine learning for perovskite materials design and discovery
Abstract The development of materials is one of the driving forces to accelerate modern scientific progress and technological innovation. Machine learning (ML) technology is rapidly developed in many fields and opening blueprints for the discovery and rational design of materials. In this review, we...
Guardado en:
Autores principales: | Qiuling Tao, Pengcheng Xu, Minjie Li, Wencong Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf319000fe4f4a69bdf90cccef7de71a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021) -
Analogical discovery of disordered perovskite oxides by crystal structure information hidden in unsupervised material fingerprints
por: Achintha Ihalage, et al.
Publicado: (2021) -
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
por: Nina Taherimakhsousi, et al.
Publicado: (2021) -
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
por: Zhilong Wang, et al.
Publicado: (2021) -
Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles
por: Yuhang Liang, et al.
Publicado: (2021)