Machine learning for perovskite materials design and discovery
Abstract The development of materials is one of the driving forces to accelerate modern scientific progress and technological innovation. Machine learning (ML) technology is rapidly developed in many fields and opening blueprints for the discovery and rational design of materials. In this review, we...
Enregistré dans:
Auteurs principaux: | Qiuling Tao, Pengcheng Xu, Minjie Li, Wencong Lu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bf319000fe4f4a69bdf90cccef7de71a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
par: Pikee Priya, et autres
Publié: (2021) -
Analogical discovery of disordered perovskite oxides by crystal structure information hidden in unsupervised material fingerprints
par: Achintha Ihalage, et autres
Publié: (2021) -
A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics
par: Nina Taherimakhsousi, et autres
Publié: (2021) -
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
par: Zhilong Wang, et autres
Publié: (2021) -
Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles
par: Yuhang Liang, et autres
Publié: (2021)