Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures
Abstract Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf4b28e936514d54ba9f5783abd8079e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bf4b28e936514d54ba9f5783abd8079e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bf4b28e936514d54ba9f5783abd8079e2021-12-02T17:52:13ZFocussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures10.1038/s41598-020-65554-42045-2322https://doaj.org/article/bf4b28e936514d54ba9f5783abd8079e2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-65554-4https://doaj.org/toc/2045-2322Abstract Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials. The proton beam can be focussed via target design to achieve exceptionally high flux, important for the applications mentioned. The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm 2, producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the curved target, and the gap between was either empty or spanned with a structure. With a structured target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order temporal and 10 μm spatial resolution, revealing the fast-acting focussing electric field. Complementary particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV.C. McGuffeyJ. KimM. S. WeiP. M. NilsonS. N. ChenJ. FuchsP. FitzsimmonsM. E. FoordD. MariscalH. S. McLeanP. K. PatelR. B. StephensF. N. BegNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q C. McGuffey J. Kim M. S. Wei P. M. Nilson S. N. Chen J. Fuchs P. Fitzsimmons M. E. Foord D. Mariscal H. S. McLean P. K. Patel R. B. Stephens F. N. Beg Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
description |
Abstract Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials. The proton beam can be focussed via target design to achieve exceptionally high flux, important for the applications mentioned. The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm 2, producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the curved target, and the gap between was either empty or spanned with a structure. With a structured target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order temporal and 10 μm spatial resolution, revealing the fast-acting focussing electric field. Complementary particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV. |
format |
article |
author |
C. McGuffey J. Kim M. S. Wei P. M. Nilson S. N. Chen J. Fuchs P. Fitzsimmons M. E. Foord D. Mariscal H. S. McLean P. K. Patel R. B. Stephens F. N. Beg |
author_facet |
C. McGuffey J. Kim M. S. Wei P. M. Nilson S. N. Chen J. Fuchs P. Fitzsimmons M. E. Foord D. Mariscal H. S. McLean P. K. Patel R. B. Stephens F. N. Beg |
author_sort |
C. McGuffey |
title |
Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
title_short |
Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
title_full |
Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
title_fullStr |
Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
title_full_unstemmed |
Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures |
title_sort |
focussing protons from a kilojoule laser for intense beam heating using proximal target structures |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/bf4b28e936514d54ba9f5783abd8079e |
work_keys_str_mv |
AT cmcguffey focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT jkim focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT mswei focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT pmnilson focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT snchen focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT jfuchs focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT pfitzsimmons focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT mefoord focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT dmariscal focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT hsmclean focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT pkpatel focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT rbstephens focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures AT fnbeg focussingprotonsfromakilojoulelaserforintensebeamheatingusingproximaltargetstructures |
_version_ |
1718379251447627776 |