DAPT: A package enabling distributed automated parameter testing

Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches), as well as storing simulation data, requires multiple, potentially customizable steps that may...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ben Duggan, John Metzcar, Paul Macklin
Formato: article
Lenguaje:EN
Publicado: GigaScience Press 2021
Materias:
Acceso en línea:https://doaj.org/article/bf5295eb4ffd4458a5b6c4549d0e0878
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches), as well as storing simulation data, requires multiple, potentially customizable steps that may vary across simulations. Furthermore, parameter testing, processing, and analysis are slowed if simulation and processing jobs cannot be shared across teammates or computational resources. While high-performance computing (HPC) has become increasingly available, models can often be tested faster with the use of multiple computers and HPC resources. To address these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package. By hosting parameters in an online (and often free) “database”, multiple individuals can run parameter sets simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of computational power. Combining this with a flexible, scriptable tool set, teams can evaluate models and assess their underlying hypotheses quickly. Here, we describe DAPT and provide an example demonstrating its use.