Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks
The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. Howeve...
Guardado en:
Autores principales: | Azam Khalili, Vahid Vahidpour, Amir Rastegarnia, Ali Farzamnia, Kenneth Teo Tze Kin, Saeid Sanei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf739746f80e4649b03e778d174876a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using Histological Staining Techniques to Improve Visualization and Interpretability of Tooth Cementum Annulation Analysis
por: Petrovic,Bojan, et al.
Publicado: (2021) -
Harbor Aquaculture Area Extraction Aided with an Integration-Enhanced Gradient Descent Algorithm
por: Yafeng Zhong, et al.
Publicado: (2021) -
Crown Formation Times of Deciduous Teeth and Age at Death in Neolithic Newborns
por: Sipovac,Milica, et al.
Publicado: (2021) -
Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model
por: Tomas Ruzgas, et al.
Publicado: (2021) -
Rough North Correction Estimation Algorithm Based on Terrain Visibility
por: Ondrej Nemec, et al.
Publicado: (2021)