Analog content-addressable memories with memristors
Designing low power and high performance content-addressable memory remains a challenge. Here, the authors demonstrate a content-addressable memory concept and circuit which leverages the analog conductance tunability of memristors, reduces power consumption, and enables new functionalities and appl...
Enregistré dans:
Auteurs principaux: | Can Li, Catherine E. Graves, Xia Sheng, Darrin Miller, Martin Foltin, Giacomo Pedretti, John Paul Strachan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bf7ea71813194669bdd97040df75ce07 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Tree-based machine learning performed in-memory with memristive analog CAM
par: Giacomo Pedretti, et autres
Publié: (2021) -
4K-memristor analog-grade passive crossbar circuit
par: H. Kim, et autres
Publié: (2021) -
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
par: Can Li, et autres
Publié: (2018) -
90% yield production of polymer nano-memristor for in-memory computing
par: Bin Zhang, et autres
Publié: (2021) -
Market for memristors and data mining memory structures for promising smart systems
par: Andrey I. Vlasov, et autres
Publié: (2020)