When a Generalized Linear Model Meets Bayesian Maximum Entropy: A Novel Spatiotemporal Ground-Level Ozone Concentration Retrieval Method
In China, ground-level ozone has shown an increasing trend and has become a serious ambient pollutant. An accurate spatiotemporal distribution of ground-level ozone concentrations (GOCs) is urgently needed. Generalized linear models (GLMs) and Bayesian maximum entropy (BME) models are practical for...
Guardado en:
Autores principales: | Yingying Mei, Jiayi Li, Deping Xiang, Jingxiong Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf944db98e42405aa6cc051b8ce50af4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian maximum entropy-based prediction of the spatiotemporal risk of schistosomiasis in Anhui Province, China
por: Fuju Wang, et al.
Publicado: (2021) -
TEMPERATURE AS THUMB RULE PREDICTOR OF OZONE LEVELS IN SANTIAGO DE CHILE GROUND AIR
por: RUBIO,MARÍA A, et al.
Publicado: (2014) -
Ozone: science & engineering
Publicado: (1979) - International journal of ozone therapy
-
Diagnosis of ozone formation sensitivity in the Mexico City Metropolitan Area using HCHO/NO2 column ratios from the ozone monitoring instrument
por: Jairo Vazquez Santiago, et al.
Publicado: (2021)