Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
Abstract In recent years, the hyperspectral classification algorithm based on deep learning has received widespread attention, but the existing network models have higher model complexity and require more time consumption. In order to further improve the accuracy of hyperspectral image classificatio...
Guardado en:
Autores principales: | Shuli Cheng, Liejun Wang, Anyu Du |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfbf761333724195bd8a38c83405dff5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Histopathological Image Retrieval Based on Asymmetric Residual Hash and DNA Coding
por: Shuli Cheng, et al.
Publicado: (2019) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
por: Dongxu Liu, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021)