The band-edge excitons observed in few-layer NiPS3
Abstract Band-edge excitons of few-layer nickel phosphorous trisulfide (NiPS3) are characterized via micro-thermal-modulated reflectance (μTR) measurements from 10 to 300 K. Prominent μTR features of the A exciton series and B are simultaneously detected near the band edge of NiPS3. The A exciton se...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfcce096671041cfb213c7a7b52d021a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Band-edge excitons of few-layer nickel phosphorous trisulfide (NiPS3) are characterized via micro-thermal-modulated reflectance (μTR) measurements from 10 to 300 K. Prominent μTR features of the A exciton series and B are simultaneously detected near the band edge of NiPS3. The A exciton series contains two sharp A 1 and A 2 levels and one threshold-energy-related transition (direct gap, E ∞), which are simultaneously detected at the lower energy side of NiPS3. In addition, one broadened B feature is present at the higher energy side of few-layer NiPS3. The A series excitons may correlate with majorly d-to-d transition in the Rydberg series with threshold energy of E ∞ ≅ 1.511 eV at 10 K. The binding energy of A1 is about 36 meV, and the transition energy is A 1 ≅ 1.366 eV at 300 K. The transition energy of B measured by μTR is about 1.894 eV at 10 K. The excitonic series A may directly transit from the top of valence band to the conduction band of NiPS3, while the B feature might originate from the spin-split-off valence band to the conduction band edge. The direct optical gap of NiPS3 is ~1.402 eV at 300 K, which is confirmed by μTR and transmittance experiments. |
---|