A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization
When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provi...
Enregistré dans:
Auteurs principaux: | Eduard Khachatrian, Saloua Chlaily, Torbjorn Eltoft, Andrea Marinoni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bfd7abd088b9463b9a186e91f96fc3e1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
par: Mohsen Ansari, et autres
Publié: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
par: E. M. M. B. Ekanayake, et autres
Publié: (2021) -
A towed magnetic gradiometer array for rapid, detailed imaging of utility, geological, and archaeological targets
par: M. A. Kass, et autres
Publié: (2021) -
Evaluating methods for reconstructing large gaps in historic snow depth time series
par: J. Aschauer, et autres
Publié: (2021) -
Architecture of solution for panoramic image blurring in GIS project application
par: D. Vasić, et autres
Publié: (2021)