A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization
When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provi...
Guardado en:
Autores principales: | Eduard Khachatrian, Saloua Chlaily, Torbjorn Eltoft, Andrea Marinoni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfd7abd088b9463b9a186e91f96fc3e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
por: E. M. M. B. Ekanayake, et al.
Publicado: (2021) -
A towed magnetic gradiometer array for rapid, detailed imaging of utility, geological, and archaeological targets
por: M. A. Kass, et al.
Publicado: (2021) -
Evaluating methods for reconstructing large gaps in historic snow depth time series
por: J. Aschauer, et al.
Publicado: (2021) -
Architecture of solution for panoramic image blurring in GIS project application
por: D. Vasić, et al.
Publicado: (2021)