Supervised Learning in Physical Networks: From Machine Learning to Learning Machines
Materials and machines are often designed with particular goals in mind, so that they exhibit desired responses to given forces or constraints. Here we explore an alternative approach, namely physical coupled learning. In this paradigm, the system is not initially designed to accomplish a task, but...
Guardado en:
Autores principales: | Menachem Stern, Daniel Hexner, Jason W. Rocks, Andrea J. Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfdef93505ef4ccea0370881623d513f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sentiment Analysis using various Machine Learning and Deep Learning Techniques
por: V Umarani, et al.
Publicado: (2021) -
Localizing a target inside an enclosed cylinder with a single chaotic cavity transducer augmented with supervised machine learning
por: Tom Sillanpää, et al.
Publicado: (2021) -
Machine Learning Link Inference of Noisy Delay-Coupled Networks with Optoelectronic Experimental Tests
por: Amitava Banerjee, et al.
Publicado: (2021) -
Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods
por: Zsuzsanna Koczor-Benda, et al.
Publicado: (2021) -
Quantum-inspired machine learning on high-energy physics data
por: Timo Felser, et al.
Publicado: (2021)