Using a Random Forest Model to Predict the Location of Potential Damage on Asphalt Pavement
Potential damage, eventually demonstrated as moisture damage on inner and in-situ road structures, is the most complex problem to predict, which costs lots of money, time, and natural resources for maintenance and even leads to safety problems. Traditional linear regression analysis cannot fit well...
Guardado en:
Autores principales: | Xiaogang Guo, Peiwen Hao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfdfe0fc29f1423283ee1341368207f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of Aging and Moisture Damage on Fatigue Cracking Properties in Asphalt Mixtures
por: Sung Lin Yang, et al.
Publicado: (2021) -
Limitations on the Use of Recycled Asphalt Pavement in Structural Concrete
por: Salma Jaawani, et al.
Publicado: (2021) -
Effect of Database Generation on Damage Consequences’ Assessment Based on Random Forests
por: Luca Braidotti, et al.
Publicado: (2021) -
Pengembangan Sistem Deteksi Kantuk Menggunakan Pengklasifikasi Random Forest pada Sinyal Elektrokardiogram
por: Nuryani Nuryani, et al.
Publicado: (2021) -
An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies
por: Jianlong Xu, et al.
Publicado: (2021)