On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations

The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Bahaaeldin Abdalla
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bfe8c68ac906427fafc1b74591116c44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal <i>b</i>-metric spaces is specified as follows utilizing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>+</mo><mi>w</mi></mfenced><mo>≥</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mfrac><mi>t</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>e</mi><mo>,</mo><mi>f</mi><mo>,</mo><mfrac><mi>s</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mfrac><mi>u</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>g</mi><mo>,</mo><mi>k</mi><mo>,</mo><mfrac><mi>v</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>k</mi><mo>,</mo><mi>d</mi><mo>,</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>≠</mo><mi>e</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>≠</mo><mi>f</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>f</mi><mo>≠</mo><mi>g</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>g</mi><mo>≠</mo><mi>k</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>k</mi><mo>≠</mo><mi>d</mi></mrow></semantics></math></inline-formula>. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.