On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations

The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Bahaaeldin Abdalla
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bfe8c68ac906427fafc1b74591116c44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bfe8c68ac906427fafc1b74591116c44
record_format dspace
spelling oai:doaj.org-article:bfe8c68ac906427fafc1b74591116c442021-11-25T19:06:11ZOn Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations10.3390/sym131120322073-8994https://doaj.org/article/bfe8c68ac906427fafc1b74591116c442021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2032https://doaj.org/toc/2073-8994The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal <i>b</i>-metric spaces is specified as follows utilizing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>+</mo><mi>w</mi></mfenced><mo>≥</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mfrac><mi>t</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>e</mi><mo>,</mo><mi>f</mi><mo>,</mo><mfrac><mi>s</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mfrac><mi>u</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>g</mi><mo>,</mo><mi>k</mi><mo>,</mo><mfrac><mi>v</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>k</mi><mo>,</mo><mi>d</mi><mo>,</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>≠</mo><mi>e</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>≠</mo><mi>f</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>f</mi><mo>≠</mo><mi>g</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>g</mi><mo>≠</mo><mi>k</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>k</mi><mo>≠</mo><mi>d</mi></mrow></semantics></math></inline-formula>. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.Sumaiya Tasneem ZubairKalpana GopalanThabet AbdeljawadBahaaeldin AbdallaMDPI AGarticlefuzzy extended hexagonal <i>b</i>-metric spacesfixed pointsnonlinear fractional differential equation of the Caputo typeMathematicsQA1-939ENSymmetry, Vol 13, Iss 2032, p 2032 (2021)
institution DOAJ
collection DOAJ
language EN
topic fuzzy extended hexagonal <i>b</i>-metric spaces
fixed points
nonlinear fractional differential equation of the Caputo type
Mathematics
QA1-939
spellingShingle fuzzy extended hexagonal <i>b</i>-metric spaces
fixed points
nonlinear fractional differential equation of the Caputo type
Mathematics
QA1-939
Sumaiya Tasneem Zubair
Kalpana Gopalan
Thabet Abdeljawad
Bahaaeldin Abdalla
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
description The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal <i>b</i>-metric spaces is specified as follows utilizing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>+</mo><mi>w</mi></mfenced><mo>≥</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mfrac><mi>t</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>e</mi><mo>,</mo><mi>f</mi><mo>,</mo><mfrac><mi>s</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mfrac><mi>u</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>g</mi><mo>,</mo><mi>k</mi><mo>,</mo><mfrac><mi>v</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>k</mi><mo>,</mo><mi>d</mi><mo>,</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>≠</mo><mi>e</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>≠</mo><mi>f</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>f</mi><mo>≠</mo><mi>g</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>g</mi><mo>≠</mo><mi>k</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>k</mi><mo>≠</mo><mi>d</mi></mrow></semantics></math></inline-formula>. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.
format article
author Sumaiya Tasneem Zubair
Kalpana Gopalan
Thabet Abdeljawad
Bahaaeldin Abdalla
author_facet Sumaiya Tasneem Zubair
Kalpana Gopalan
Thabet Abdeljawad
Bahaaeldin Abdalla
author_sort Sumaiya Tasneem Zubair
title On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
title_short On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
title_full On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
title_fullStr On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
title_full_unstemmed On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
title_sort on fuzzy extended hexagonal <i>b</i>-metric spaces with applications to nonlinear fractional differential equations
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bfe8c68ac906427fafc1b74591116c44
work_keys_str_mv AT sumaiyatasneemzubair onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations
AT kalpanagopalan onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations
AT thabetabdeljawad onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations
AT bahaaeldinabdalla onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations
_version_ 1718410302898307072