On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations
The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfe8c68ac906427fafc1b74591116c44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bfe8c68ac906427fafc1b74591116c44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bfe8c68ac906427fafc1b74591116c442021-11-25T19:06:11ZOn Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations10.3390/sym131120322073-8994https://doaj.org/article/bfe8c68ac906427fafc1b74591116c442021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2032https://doaj.org/toc/2073-8994The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal <i>b</i>-metric spaces is specified as follows utilizing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>+</mo><mi>w</mi></mfenced><mo>≥</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mfrac><mi>t</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>e</mi><mo>,</mo><mi>f</mi><mo>,</mo><mfrac><mi>s</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mfrac><mi>u</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>g</mi><mo>,</mo><mi>k</mi><mo>,</mo><mfrac><mi>v</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>k</mi><mo>,</mo><mi>d</mi><mo>,</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>≠</mo><mi>e</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>≠</mo><mi>f</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>f</mi><mo>≠</mo><mi>g</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>g</mi><mo>≠</mo><mi>k</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>k</mi><mo>≠</mo><mi>d</mi></mrow></semantics></math></inline-formula>. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.Sumaiya Tasneem ZubairKalpana GopalanThabet AbdeljawadBahaaeldin AbdallaMDPI AGarticlefuzzy extended hexagonal <i>b</i>-metric spacesfixed pointsnonlinear fractional differential equation of the Caputo typeMathematicsQA1-939ENSymmetry, Vol 13, Iss 2032, p 2032 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fuzzy extended hexagonal <i>b</i>-metric spaces fixed points nonlinear fractional differential equation of the Caputo type Mathematics QA1-939 |
spellingShingle |
fuzzy extended hexagonal <i>b</i>-metric spaces fixed points nonlinear fractional differential equation of the Caputo type Mathematics QA1-939 Sumaiya Tasneem Zubair Kalpana Gopalan Thabet Abdeljawad Bahaaeldin Abdalla On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
description |
The focus of this research article is to investigate the notion of fuzzy extended hexagonal <i>b</i>-metric spaces as a technique of broadening the fuzzy rectangular <i>b</i>-metric spaces and extended fuzzy rectangular <i>b</i>-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal <i>b</i>-metric spaces is specified as follows utilizing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>+</mo><mi>w</mi></mfenced><mo>≥</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mfrac><mi>t</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>e</mi><mo>,</mo><mi>f</mi><mo>,</mo><mfrac><mi>s</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mfrac><mi>u</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>g</mi><mo>,</mo><mi>k</mi><mo>,</mo><mfrac><mi>v</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced><mo>∗</mo><msub><mi mathvariant="fraktur">m</mi><mi mathvariant="sans-serif">h</mi></msub><mfenced separators="" open="(" close=")"><mi>k</mi><mo>,</mo><mi>d</mi><mo>,</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>≠</mo><mi>e</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>≠</mo><mi>f</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>f</mi><mo>≠</mo><mi>g</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>g</mi><mo>≠</mo><mi>k</mi><mo>,</mo><mspace width="0.277778em"></mspace><mi>k</mi><mo>≠</mo><mi>d</mi></mrow></semantics></math></inline-formula>. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained. |
format |
article |
author |
Sumaiya Tasneem Zubair Kalpana Gopalan Thabet Abdeljawad Bahaaeldin Abdalla |
author_facet |
Sumaiya Tasneem Zubair Kalpana Gopalan Thabet Abdeljawad Bahaaeldin Abdalla |
author_sort |
Sumaiya Tasneem Zubair |
title |
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
title_short |
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
title_full |
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
title_fullStr |
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
title_full_unstemmed |
On Fuzzy Extended Hexagonal <i>b</i>-Metric Spaces with Applications to Nonlinear Fractional Differential Equations |
title_sort |
on fuzzy extended hexagonal <i>b</i>-metric spaces with applications to nonlinear fractional differential equations |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/bfe8c68ac906427fafc1b74591116c44 |
work_keys_str_mv |
AT sumaiyatasneemzubair onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations AT kalpanagopalan onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations AT thabetabdeljawad onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations AT bahaaeldinabdalla onfuzzyextendedhexagonalibimetricspaceswithapplicationstononlinearfractionaldifferentialequations |
_version_ |
1718410302898307072 |