The Stability Analysis of A-Quartic Functional Equation
In this paper, we study the general solution of the functional equation, which is derived from additive–quartic mappings. In addition, we establish the generalized Hyers–Ulam stability of the additive–quartic functional equation in Banach spaces by using direct and fixed point methods.
Guardado en:
Autores principales: | Chinnaappu Muthamilarasi, Shyam Sundar Santra, Ganapathy Balasubramanian, Vediyappan Govindan, Rami Ahmad El-Nabulsi, Khaled Mohamed Khedher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfeca21c9ed64a0c81ce1b857bdc959f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
por: Eshaghi Gordji,M, et al.
Publicado: (2010) -
Hyers-Ulam stability of an additive-quadratic functional equation
por: Govindan,Vediyappan, et al.
Publicado: (2020) -
On the hyperstability of a quartic functional equation in Banach spaces
por: Bounader,Nordine
Publicado: (2017) -
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
por: Alberto M. Simões, et al.
Publicado: (2021) -
Generalized Ulam-Hyers-Rassias stability of a Cauchy type functional equation
por: Akkouchi,Mohamed
Publicado: (2013)