The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfee257388a24b4c8fcd67fbefcab8f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bfee257388a24b4c8fcd67fbefcab8f7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bfee257388a24b4c8fcd67fbefcab8f72021-11-18T07:48:08ZThe susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages.1932-620310.1371/journal.pone.0060575https://doaj.org/article/bfee257388a24b4c8fcd67fbefcab8f72013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23637754/?tool=EBIhttps://doaj.org/toc/1932-6203Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from "pyophage", a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.Christiane EssohYann BlouinGuillaume LoukouArsher CablanmianSerge LathroElizabeth KutterHoang Vu ThienGilles VergnaudChristine PourcelPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 4, p e60575 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Christiane Essoh Yann Blouin Guillaume Loukou Arsher Cablanmian Serge Lathro Elizabeth Kutter Hoang Vu Thien Gilles Vergnaud Christine Pourcel The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
description |
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from "pyophage", a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages. |
format |
article |
author |
Christiane Essoh Yann Blouin Guillaume Loukou Arsher Cablanmian Serge Lathro Elizabeth Kutter Hoang Vu Thien Gilles Vergnaud Christine Pourcel |
author_facet |
Christiane Essoh Yann Blouin Guillaume Loukou Arsher Cablanmian Serge Lathro Elizabeth Kutter Hoang Vu Thien Gilles Vergnaud Christine Pourcel |
author_sort |
Christiane Essoh |
title |
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
title_short |
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
title_full |
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
title_fullStr |
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
title_full_unstemmed |
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
title_sort |
susceptibility of pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/bfee257388a24b4c8fcd67fbefcab8f7 |
work_keys_str_mv |
AT christianeessoh thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT yannblouin thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT guillaumeloukou thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT arshercablanmian thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT sergelathro thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT elizabethkutter thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT hoangvuthien thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT gillesvergnaud thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT christinepourcel thesusceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT christianeessoh susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT yannblouin susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT guillaumeloukou susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT arshercablanmian susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT sergelathro susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT elizabethkutter susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT hoangvuthien susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT gillesvergnaud susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages AT christinepourcel susceptibilityofpseudomonasaeruginosastrainsfromcysticfibrosispatientstobacteriophages |
_version_ |
1718422934786146304 |