Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells
Quantitative methods for assessing differentiative potency of adipose-derived stem/stromal cells may lead to improved clinical application of this multipotent stem cell, by advancing our understanding of specific processes such as adipogenic differentiation. Conventional cell staining methods are us...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bff1e437b2dc439eaaae392b6254a39b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bff1e437b2dc439eaaae392b6254a39b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bff1e437b2dc439eaaae392b6254a39b2021-11-26T11:19:49ZApplication of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells2162-39452162-397X10.1080/21623945.2021.2000696https://doaj.org/article/bff1e437b2dc439eaaae392b6254a39b2021-01-01T00:00:00Zhttp://dx.doi.org/10.1080/21623945.2021.2000696https://doaj.org/toc/2162-3945https://doaj.org/toc/2162-397XQuantitative methods for assessing differentiative potency of adipose-derived stem/stromal cells may lead to improved clinical application of this multipotent stem cell, by advancing our understanding of specific processes such as adipogenic differentiation. Conventional cell staining methods are used to determine the formation of adipose areas during adipogenesis as a qualitative representation of adipogenic potency. Staining methods such as oil-red-O are quantifiable using absorbance measurements, but these assays are time and material consuming. Detection methods for cell characteristics using advanced image analysis by machine learning are emerging. Here, live-cell imaging was combined with a deep learning-based detection tool to quantify the presence of adipose areas and lipid droplet formation during adipogenic differentiation of adipose-derived stem/stromal cells. Different detection masks quantified adipose area and lipid droplet formation at different time points indicating kinetics of adipogenesis and showed differences between individual donors. Whereas CEBPA and PPARG expression seems to precede the increase in adipose area and lipid droplets, it might be able to predict expression of ADIPOQ. The applied method is a proof of concept, demonstrating that deep learning methods can be used to investigate adipogenic differentiation and kinetics in vitro using specific detection masks based on algorithm produced from annotation of image data.Patrick Terrence BrooksLea Munthe-FogKlaus RieneckFrederik Banch ClausenOlga Ballesteros RiveraEva Kannik HaastrupAnne Fischer-NielsenJesper Dyrendom SvalgaardTaylor & Francis Grouparticleadipogenesisdifferentiationadipose-derived stem cellsstem cellsdeep learningmachine learningDiseases of the endocrine glands. Clinical endocrinologyRC648-665CytologyQH573-671PhysiologyQP1-981ENAdipocyte, Vol 10, Iss 1, Pp 621-630 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
adipogenesis differentiation adipose-derived stem cells stem cells deep learning machine learning Diseases of the endocrine glands. Clinical endocrinology RC648-665 Cytology QH573-671 Physiology QP1-981 |
spellingShingle |
adipogenesis differentiation adipose-derived stem cells stem cells deep learning machine learning Diseases of the endocrine glands. Clinical endocrinology RC648-665 Cytology QH573-671 Physiology QP1-981 Patrick Terrence Brooks Lea Munthe-Fog Klaus Rieneck Frederik Banch Clausen Olga Ballesteros Rivera Eva Kannik Haastrup Anne Fischer-Nielsen Jesper Dyrendom Svalgaard Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
description |
Quantitative methods for assessing differentiative potency of adipose-derived stem/stromal cells may lead to improved clinical application of this multipotent stem cell, by advancing our understanding of specific processes such as adipogenic differentiation. Conventional cell staining methods are used to determine the formation of adipose areas during adipogenesis as a qualitative representation of adipogenic potency. Staining methods such as oil-red-O are quantifiable using absorbance measurements, but these assays are time and material consuming. Detection methods for cell characteristics using advanced image analysis by machine learning are emerging. Here, live-cell imaging was combined with a deep learning-based detection tool to quantify the presence of adipose areas and lipid droplet formation during adipogenic differentiation of adipose-derived stem/stromal cells. Different detection masks quantified adipose area and lipid droplet formation at different time points indicating kinetics of adipogenesis and showed differences between individual donors. Whereas CEBPA and PPARG expression seems to precede the increase in adipose area and lipid droplets, it might be able to predict expression of ADIPOQ. The applied method is a proof of concept, demonstrating that deep learning methods can be used to investigate adipogenic differentiation and kinetics in vitro using specific detection masks based on algorithm produced from annotation of image data. |
format |
article |
author |
Patrick Terrence Brooks Lea Munthe-Fog Klaus Rieneck Frederik Banch Clausen Olga Ballesteros Rivera Eva Kannik Haastrup Anne Fischer-Nielsen Jesper Dyrendom Svalgaard |
author_facet |
Patrick Terrence Brooks Lea Munthe-Fog Klaus Rieneck Frederik Banch Clausen Olga Ballesteros Rivera Eva Kannik Haastrup Anne Fischer-Nielsen Jesper Dyrendom Svalgaard |
author_sort |
Patrick Terrence Brooks |
title |
Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
title_short |
Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
title_full |
Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
title_fullStr |
Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
title_full_unstemmed |
Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
title_sort |
application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells |
publisher |
Taylor & Francis Group |
publishDate |
2021 |
url |
https://doaj.org/article/bff1e437b2dc439eaaae392b6254a39b |
work_keys_str_mv |
AT patrickterrencebrooks applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT leamunthefog applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT klausrieneck applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT frederikbanchclausen applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT olgaballesterosrivera applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT evakannikhaastrup applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT annefischernielsen applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells AT jesperdyrendomsvalgaard applicationofadeeplearningbasedimageanalysisandlivecellimagingsystemforquantifyingadipogenicdifferentiationkineticsofadiposederivedstemstromalcells |
_version_ |
1718409497620250624 |