Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bff51525773547649c9ec281d7ff076f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bff51525773547649c9ec281d7ff076f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bff51525773547649c9ec281d7ff076f2021-12-02T14:38:42ZEfficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes10.1038/s41467-019-08535-02041-1723https://doaj.org/article/bff51525773547649c9ec281d7ff076f2019-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-08535-0https://doaj.org/toc/2041-1723Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.Wonil ChungJun ChenConstance TurmanSara LindstromZhaozhong ZhuPo-Ru LohPeter KraftLiming LiangNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Wonil Chung Jun Chen Constance Turman Sara Lindstrom Zhaozhong Zhu Po-Ru Loh Peter Kraft Liming Liang Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
description |
Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts. |
format |
article |
author |
Wonil Chung Jun Chen Constance Turman Sara Lindstrom Zhaozhong Zhu Po-Ru Loh Peter Kraft Liming Liang |
author_facet |
Wonil Chung Jun Chen Constance Turman Sara Lindstrom Zhaozhong Zhu Po-Ru Loh Peter Kraft Liming Liang |
author_sort |
Wonil Chung |
title |
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
title_short |
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
title_full |
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
title_fullStr |
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
title_full_unstemmed |
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
title_sort |
efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/bff51525773547649c9ec281d7ff076f |
work_keys_str_mv |
AT wonilchung efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT junchen efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT constanceturman efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT saralindstrom efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT zhaozhongzhu efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT poruloh efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT peterkraft efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes AT limingliang efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes |
_version_ |
1718390917097848832 |