Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes

Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.

Guardado en:
Detalles Bibliográficos
Autores principales: Wonil Chung, Jun Chen, Constance Turman, Sara Lindstrom, Zhaozhong Zhu, Po-Ru Loh, Peter Kraft, Liming Liang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/bff51525773547649c9ec281d7ff076f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bff51525773547649c9ec281d7ff076f
record_format dspace
spelling oai:doaj.org-article:bff51525773547649c9ec281d7ff076f2021-12-02T14:38:42ZEfficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes10.1038/s41467-019-08535-02041-1723https://doaj.org/article/bff51525773547649c9ec281d7ff076f2019-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-08535-0https://doaj.org/toc/2041-1723Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.Wonil ChungJun ChenConstance TurmanSara LindstromZhaozhong ZhuPo-Ru LohPeter KraftLiming LiangNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Wonil Chung
Jun Chen
Constance Turman
Sara Lindstrom
Zhaozhong Zhu
Po-Ru Loh
Peter Kraft
Liming Liang
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
description Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.
format article
author Wonil Chung
Jun Chen
Constance Turman
Sara Lindstrom
Zhaozhong Zhu
Po-Ru Loh
Peter Kraft
Liming Liang
author_facet Wonil Chung
Jun Chen
Constance Turman
Sara Lindstrom
Zhaozhong Zhu
Po-Ru Loh
Peter Kraft
Liming Liang
author_sort Wonil Chung
title Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
title_short Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
title_full Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
title_fullStr Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
title_full_unstemmed Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
title_sort efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/bff51525773547649c9ec281d7ff076f
work_keys_str_mv AT wonilchung efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT junchen efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT constanceturman efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT saralindstrom efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT zhaozhongzhu efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT poruloh efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT peterkraft efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
AT limingliang efficientcrosstraitpenalizedregressionincreasespredictionaccuracyinlargecohortsusingsecondaryphenotypes
_version_ 1718390917097848832