Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes

Information of genetic architectures of complex traits can be leveraged for predicting phenotypes. Here, the authors develop CTPR (Cross-Trait Penalized Regression), a method for multi-trait polygenic risk prediction using individual-level genotypes and/or summary statistics from large cohorts.

Guardado en:
Detalles Bibliográficos
Autores principales: Wonil Chung, Jun Chen, Constance Turman, Sara Lindstrom, Zhaozhong Zhu, Po-Ru Loh, Peter Kraft, Liming Liang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/bff51525773547649c9ec281d7ff076f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!