High-resolution measurement technology for the detection of complex process influences in machining operations
Inorganic non-metallic materials are widely used in many application areas such as precision optics, semiconductor technology, high-temperature technology or medical technology. This increasingly requires the application of precise multi-axis CNC machine technology and poses great challenges for the...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bff96d91e0544188ac5886dcba1c9188 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Inorganic non-metallic materials are widely used in many application areas such as precision optics, semiconductor technology, high-temperature technology or medical technology. This increasingly requires the application of precise multi-axis CNC machine technology and poses great challenges for the machining processes, especially with regard to the economic production of high-quality surfaces. In the field of optics technology, high surface qualities in the nanometer range are often required. The production machines designed for this purpose must therefore guarantee a high degree of accuracy and be constant with respect to their environmental factors. An influence on the quality of the machining results that should not be underestimated is the vibrations occurring on the machine, which are caused on the one hand by the operating vibrations generated by the running spindle, and on the other hand by resonance frequencies. A side effect of these vibrations can also be damage to the workpiece or the tool. In order to detect these influences, a modal analysis and a measurement of the operating vibration mode are carried out on an ultrasonic-assisted CNC grinding machine using a three-dimensional laser Doppler vibrometer system provided by Polytec GmbH. In addition, corresponding measurements are carried out by means of a one-dimensional laser Doppler vibrometer on a 5-axis CNC universal milling machine in order to establish comparability between an ultrasound-assisted and a conventional processing machine. |
---|