Population level inference for multivariate MEG analysis.
Multivariate analysis is a very general and powerful technique for analysing Magnetoencephalography (MEG) data. An outstanding problem however is how to make inferences that are consistent over a group of subjects as to whether there are condition-specific differences in data features, and what are...
Guardado en:
Autores principales: | Anna Jafarpour, Gareth Barnes, Lluis Fuentemilla, Emrah Duzel, Will D Penny |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bfff262a057e4505bb29101816605d02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Testing covariance models for MEG source reconstruction of hippocampal activity
por: George C. O’Neill, et al.
Publicado: (2021) -
Pragmatic spatial sampling for wearable MEG arrays
por: Tim M. Tierney, et al.
Publicado: (2020) -
MEG source localization using invariance of noise space.
por: Junpeng Zhang, et al.
Publicado: (2013) -
MEG correlates of learning novel objects properties in children.
por: Charline Urbain, et al.
Publicado: (2013) -
A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity.
por: Claudia Lappe, et al.
Publicado: (2013)