Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers

Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aikaterini Gialopsou, Christopher Abel, T. M. James, Thomas Coussens, Mark G. Bason, Reuben Puddy, Francesco Di Lorenzo, Katharina Rolfs, Jens Voigt, Tilmann Sander, Mara Cercignani, Peter Krüger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c00f9d17da72474aa63b886efc2ffd57
record_format dspace
spelling oai:doaj.org-article:c00f9d17da72474aa63b886efc2ffd572021-11-21T12:16:57ZImproved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers10.1038/s41598-021-01854-72045-2322https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd572021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01854-7https://doaj.org/toc/2045-2322Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.Aikaterini GialopsouChristopher AbelT. M. JamesThomas CoussensMark G. BasonReuben PuddyFrancesco Di LorenzoKatharina RolfsJens VoigtTilmann SanderMara CercignaniPeter KrügerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Aikaterini Gialopsou
Christopher Abel
T. M. James
Thomas Coussens
Mark G. Bason
Reuben Puddy
Francesco Di Lorenzo
Katharina Rolfs
Jens Voigt
Tilmann Sander
Mara Cercignani
Peter Krüger
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
description Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.
format article
author Aikaterini Gialopsou
Christopher Abel
T. M. James
Thomas Coussens
Mark G. Bason
Reuben Puddy
Francesco Di Lorenzo
Katharina Rolfs
Jens Voigt
Tilmann Sander
Mara Cercignani
Peter Krüger
author_facet Aikaterini Gialopsou
Christopher Abel
T. M. James
Thomas Coussens
Mark G. Bason
Reuben Puddy
Francesco Di Lorenzo
Katharina Rolfs
Jens Voigt
Tilmann Sander
Mara Cercignani
Peter Krüger
author_sort Aikaterini Gialopsou
title Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
title_short Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
title_full Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
title_fullStr Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
title_full_unstemmed Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
title_sort improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd57
work_keys_str_mv AT aikaterinigialopsou improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT christopherabel improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT tmjames improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT thomascoussens improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT markgbason improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT reubenpuddy improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT francescodilorenzo improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT katharinarolfs improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT jensvoigt improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT tilmannsander improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT maracercignani improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
AT peterkruger improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers
_version_ 1718419091476185088