Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of s...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c00f9d17da72474aa63b886efc2ffd57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c00f9d17da72474aa63b886efc2ffd572021-11-21T12:16:57ZImproved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers10.1038/s41598-021-01854-72045-2322https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd572021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01854-7https://doaj.org/toc/2045-2322Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.Aikaterini GialopsouChristopher AbelT. M. JamesThomas CoussensMark G. BasonReuben PuddyFrancesco Di LorenzoKatharina RolfsJens VoigtTilmann SanderMara CercignaniPeter KrügerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Aikaterini Gialopsou Christopher Abel T. M. James Thomas Coussens Mark G. Bason Reuben Puddy Francesco Di Lorenzo Katharina Rolfs Jens Voigt Tilmann Sander Mara Cercignani Peter Krüger Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
description |
Abstract Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains. |
format |
article |
author |
Aikaterini Gialopsou Christopher Abel T. M. James Thomas Coussens Mark G. Bason Reuben Puddy Francesco Di Lorenzo Katharina Rolfs Jens Voigt Tilmann Sander Mara Cercignani Peter Krüger |
author_facet |
Aikaterini Gialopsou Christopher Abel T. M. James Thomas Coussens Mark G. Bason Reuben Puddy Francesco Di Lorenzo Katharina Rolfs Jens Voigt Tilmann Sander Mara Cercignani Peter Krüger |
author_sort |
Aikaterini Gialopsou |
title |
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
title_short |
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
title_full |
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
title_fullStr |
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
title_full_unstemmed |
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
title_sort |
improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c00f9d17da72474aa63b886efc2ffd57 |
work_keys_str_mv |
AT aikaterinigialopsou improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT christopherabel improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT tmjames improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT thomascoussens improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT markgbason improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT reubenpuddy improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT francescodilorenzo improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT katharinarolfs improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT jensvoigt improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT tilmannsander improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT maracercignani improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers AT peterkruger improvedspatiotemporalmeasurementsofvisuallyevokedfieldsusingopticallypumpedmagnetometers |
_version_ |
1718419091476185088 |