Precise Control of Nanoscale Interface for Efficient Electrochemical Reactions

Control of the nanoscale interface leads to efficient electrochemical reactions and unique molecular behaviors. This paper reviews our recent investigations on understanding the unique property of the electrochemical reactions at nanostructured interfaces. We have focused on the control of chemical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hiro MINAMIMOTO, Kei MURAKOSHI
Formato: article
Lenguaje:EN
JA
Publicado: The Electrochemical Society of Japan 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c0137a2a1967411794e30e9195113b33
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Control of the nanoscale interface leads to efficient electrochemical reactions and unique molecular behaviors. This paper reviews our recent investigations on understanding the unique property of the electrochemical reactions at nanostructured interfaces. We have focused on the control of chemical reactions in the vicinity of metal nanostructures to condense the energy perturbations of electrons, ions, and photons. We have established an electrochemical nanostructure control method to achieve ultimate energy condensation. In addition, we have revealed the unique molecular behaviors induced by the strong interaction between the target molecules and the nanostructured electrode, originating from the hybridization of the electronic states showing collective excitation modes especially under the light illumination. Furthermore, we have attempted to efficiently control the electrochemical reactions and observe the unique reaction selectivity on the nanostructured electrodes. Through these investigations, we have proposed advantages for the control of nanostructured interfaces to overcome the current limitation of electrochemical reactions.