Species‐level image classification with convolutional neural network enables insect identification from habitus images
Abstract Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here...
Enregistré dans:
Auteurs principaux: | Oskar L. P. Hansen, Jens‐Christian Svenning, Kent Olsen, Steen Dupont, Beulah H. Garner, Alexandros Iosifidis, Benjamin W. Price, Toke T. Høye |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c01d4d02cbea445f9f5264d13dbac9e5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The presence of the marsupial Dromiciops gliroides in Parque Nacional Los Alerces, Chubut, Southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption
par: Gurovich,Yamila, et autres
Publié: (2015) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
par: Ramla Bensaci, et autres
Publié: (2021) -
Segmentation of microscopic images of sputum stained by Ziehl - Nielsen using wavelet transform Mexican Hat
par: A. N. Narkevich, et autres
Publié: (2017) -
Journal of insect science JIS.
Publié: (2001) -
Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation
par: Martina Melinščak, et autres
Publié: (2021)