Species‐level image classification with convolutional neural network enables insect identification from habitus images
Abstract Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground‐dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here...
Guardado en:
Autores principales: | Oskar L. P. Hansen, Jens‐Christian Svenning, Kent Olsen, Steen Dupont, Beulah H. Garner, Alexandros Iosifidis, Benjamin W. Price, Toke T. Høye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c01d4d02cbea445f9f5264d13dbac9e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The presence of the marsupial Dromiciops gliroides in Parque Nacional Los Alerces, Chubut, Southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption
por: Gurovich,Yamila, et al.
Publicado: (2015) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
Segmentation of microscopic images of sputum stained by Ziehl - Nielsen using wavelet transform Mexican Hat
por: A. N. Narkevich, et al.
Publicado: (2017) -
Journal of insect science JIS.
Publicado: (2001) -
Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation
por: Martina Melinščak, et al.
Publicado: (2021)