Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.

One should assume that in silico experiments in systems biology are less susceptible to reproducibility issues than their wet-lab counterparts, because they are free from natural biological variations and their environment can be fully controlled. However, recent studies show that only half of the p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher Schölzel, Valeria Blesius, Gernot Ernst, Alexander Goesmann, Andreas Dominik
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c02c3280798a4a0fa97b4841d5e359e9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c02c3280798a4a0fa97b4841d5e359e9
record_format dspace
spelling oai:doaj.org-article:c02c3280798a4a0fa97b4841d5e359e92021-12-02T20:06:50ZCountering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.1932-620310.1371/journal.pone.0254749https://doaj.org/article/c02c3280798a4a0fa97b4841d5e359e92021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254749https://doaj.org/toc/1932-6203One should assume that in silico experiments in systems biology are less susceptible to reproducibility issues than their wet-lab counterparts, because they are free from natural biological variations and their environment can be fully controlled. However, recent studies show that only half of the published mathematical models of biological systems can be reproduced without substantial effort. In this article we examine the potential causes for failed or cumbersome reproductions in a case study of a one-dimensional mathematical model of the atrioventricular node, which took us four months to reproduce. The model demonstrates that even otherwise rigorous studies can be hard to reproduce due to missing information, errors in equations and parameters, a lack in available data files, non-executable code, missing or incomplete experiment protocols, and missing rationales behind equations. Many of these issues seem similar to problems that have been solved in software engineering using techniques such as unit testing, regression tests, continuous integration, version control, archival services, and a thorough modular design with extensive documentation. Applying these techniques, we reimplement the examined model using the modeling language Modelica. The resulting workflow is independent of the model and can be translated to SBML, CellML, and other languages. It guarantees methods reproducibility by executing automated tests in a virtual machine on a server that is physically separated from the development environment. Additionally, it facilitates results reproducibility, because the model is more understandable and because the complete model code, experiment protocols, and simulation data are published and can be accessed in the exact version that was used in this article. We found the additional design and documentation effort well justified, even just considering the immediate benefits during development such as easier and faster debugging, increased understandability of equations, and a reduced requirement for looking up details from the literature.Christopher SchölzelValeria BlesiusGernot ErnstAlexander GoesmannAndreas DominikPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0254749 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Christopher Schölzel
Valeria Blesius
Gernot Ernst
Alexander Goesmann
Andreas Dominik
Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
description One should assume that in silico experiments in systems biology are less susceptible to reproducibility issues than their wet-lab counterparts, because they are free from natural biological variations and their environment can be fully controlled. However, recent studies show that only half of the published mathematical models of biological systems can be reproduced without substantial effort. In this article we examine the potential causes for failed or cumbersome reproductions in a case study of a one-dimensional mathematical model of the atrioventricular node, which took us four months to reproduce. The model demonstrates that even otherwise rigorous studies can be hard to reproduce due to missing information, errors in equations and parameters, a lack in available data files, non-executable code, missing or incomplete experiment protocols, and missing rationales behind equations. Many of these issues seem similar to problems that have been solved in software engineering using techniques such as unit testing, regression tests, continuous integration, version control, archival services, and a thorough modular design with extensive documentation. Applying these techniques, we reimplement the examined model using the modeling language Modelica. The resulting workflow is independent of the model and can be translated to SBML, CellML, and other languages. It guarantees methods reproducibility by executing automated tests in a virtual machine on a server that is physically separated from the development environment. Additionally, it facilitates results reproducibility, because the model is more understandable and because the complete model code, experiment protocols, and simulation data are published and can be accessed in the exact version that was used in this article. We found the additional design and documentation effort well justified, even just considering the immediate benefits during development such as easier and faster debugging, increased understandability of equations, and a reduced requirement for looking up details from the literature.
format article
author Christopher Schölzel
Valeria Blesius
Gernot Ernst
Alexander Goesmann
Andreas Dominik
author_facet Christopher Schölzel
Valeria Blesius
Gernot Ernst
Alexander Goesmann
Andreas Dominik
author_sort Christopher Schölzel
title Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
title_short Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
title_full Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
title_fullStr Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
title_full_unstemmed Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node.
title_sort countering reproducibility issues in mathematical models with software engineering techniques: a case study using a one-dimensional mathematical model of the atrioventricular node.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/c02c3280798a4a0fa97b4841d5e359e9
work_keys_str_mv AT christopherscholzel counteringreproducibilityissuesinmathematicalmodelswithsoftwareengineeringtechniquesacasestudyusingaonedimensionalmathematicalmodeloftheatrioventricularnode
AT valeriablesius counteringreproducibilityissuesinmathematicalmodelswithsoftwareengineeringtechniquesacasestudyusingaonedimensionalmathematicalmodeloftheatrioventricularnode
AT gernoternst counteringreproducibilityissuesinmathematicalmodelswithsoftwareengineeringtechniquesacasestudyusingaonedimensionalmathematicalmodeloftheatrioventricularnode
AT alexandergoesmann counteringreproducibilityissuesinmathematicalmodelswithsoftwareengineeringtechniquesacasestudyusingaonedimensionalmathematicalmodeloftheatrioventricularnode
AT andreasdominik counteringreproducibilityissuesinmathematicalmodelswithsoftwareengineeringtechniquesacasestudyusingaonedimensionalmathematicalmodeloftheatrioventricularnode
_version_ 1718375385475842048