Forecasting influenza activity using machine-learned mobility map
Human mobility plays a central role in the spread of infectious diseases and can help in forecasting incidence. Here the authors show a comparison of multiple mobility benchmarks in forecasting influenza, and demonstrate the value of a machine-learned mobility map with global coverage at multiple sp...
Guardado en:
Autores principales: | Srinivasan Venkatramanan, Adam Sadilek, Arindam Fadikar, Christopher L. Barrett, Matthew Biggerstaff, Jiangzhuo Chen, Xerxes Dotiwalla, Paul Eastham, Bryant Gipson, Dave Higdon, Onur Kucuktunc, Allison Lieber, Bryan L. Lewis, Zane Reynolds, Anil K. Vullikanti, Lijing Wang, Madhav Marathe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c02c4522aef64826b5c7b971f6fda370 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hierarchical organization of urban mobility and its connection with city livability
por: Aleix Bassolas, et al.
Publicado: (2019) -
Human initiated cascading failures in societal infrastructures.
por: Chris Barrett, et al.
Publicado: (2012) -
Privacy-first health research with federated learning
por: Adam Sadilek, et al.
Publicado: (2021) -
Asymptomatic individuals can increase the final epidemic size under adaptive human behavior
por: Baltazar Espinoza, et al.
Publicado: (2021) -
Differentially private partition selection
por: Desfontaines Damien, et al.
Publicado: (2022)