Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
Abstract Missed fractures are the most common diagnostic error in emergency departments and can lead to treatment delays and long-term disability. Here we show through a multi-site study that a deep-learning system can accurately identify fractures throughout the adult musculoskeletal system. This a...
Guardado en:
Autores principales: | Rebecca M. Jones, Anuj Sharma, Robert Hotchkiss, John W. Sperling, Jackson Hamburger, Christian Ledig, Robert O’Toole, Michael Gardner, Srivas Venkatesh, Matthew M. Roberts, Romain Sauvestre, Max Shatkhin, Anant Gupta, Sumit Chopra, Manickam Kumaravel, Aaron Daluiski, Will Plogger, Jason Nascone, Hollis G. Potter, Robert V. Lindsey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c02d45617a4140d6845b63adf3098c46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs
por: Minliang He, et al.
Publicado: (2021) - Musculoskeletal Care
- Journal of musculoskeletal pain
-
Journal of musculoskeletal research
Publicado: (1997) -
BMC musculoskeletal disorders
Publicado: (2000)