Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release

Abdul Hakeem,1,2,* Fouzia Zahid,1,* Guiting Zhan,1 Ping Yi,3 Hai Yang,1 Lu Gan,1 Xiangliang Yang1 1National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hakeem A, Zahid F, Zhan G, Yi P, Yang H, Gan L, Yang X
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/c03b9a1b5c894e83b2130cdf6684ebfe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c03b9a1b5c894e83b2130cdf6684ebfe
record_format dspace
spelling oai:doaj.org-article:c03b9a1b5c894e83b2130cdf6684ebfe2021-12-02T02:05:00ZPolyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release1178-2013https://doaj.org/article/c03b9a1b5c894e83b2130cdf6684ebfe2018-02-01T00:00:00Zhttps://www.dovepress.com/polyaspartic-acid-anchored--mesoporous-silica-nanoparticles-for-ph-res-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Abdul Hakeem,1,2,* Fouzia Zahid,1,* Guiting Zhan,1 Ping Yi,3 Hai Yang,1 Lu Gan,1 Xiangliang Yang1 1National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 2Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan; 3Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Background: Nanotechnology-based drug delivery systems exhibit promising therapeutic efficacy in cancer chemotherapy. However, ideal nano drug carriers are supposed to be sufficiently internalized into cancer cells and then release therapeutic cargoes in response to certain intracellular stimuli, which has never been an easy task to achieve.Objective: This study is to design mesoporous silica nanoparticles (MSNs)-based pH-responsive nano drug delivery system that is effectively internalized into cancer cells and then release drug in response to lysosomal/endosomal acidified environment.Methods: We synthesized MSNs by sol-gel method. Doxorubicin (DOX) was encapsulated into the pores as a model drug. Polyaspartic acid (PAsA) was anchored on the surface of mesoporous MSNs (P-MSNs) as a gatekeeper via amide linkage and endowed MSNs with positive charge.Results: In vitro release analysis demonstrated enhanced DOX release from DOX-loaded PAsA-anchored MSNs (DOX@P-MSNs) under endosomal/lysosomal acidic pH condition. Moreover, more DOX@P-MSNs were internalized into HepG2 cells than DOX-loaded MSNs (DOX@MSNs) and free DOX revealed by flow cytometry. Likewise, confocal microscopic images revealed that DOX@P-MSNs effectively released DOX and translocated to the nucleus. Much stronger cytotoxicity of DOX@P-MSNs against HepG2 cells was observed compared with DOX@MSNs and free DOX.Conclusion: DOX@P-MSNs were successfully fabricated and achieved pH-responsive DOX release. We anticipated this nanotherapeutics might be suitable contenders for future in vivo cancer chemotherapeutic applications. Keywords: cancer chemotherapy, mesoporous silica nanoparticles, polyaspartic acid, pH-responsive release, cytotoxicityHakeem AZahid FZhan GYi PYang HGan LYang XDove Medical PressarticleCancer chemotherapyMesoporous silica nanoparticlesPolyaspartic acidpH-responsive releasecytotoxicityMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 1029-1040 (2018)
institution DOAJ
collection DOAJ
language EN
topic Cancer chemotherapy
Mesoporous silica nanoparticles
Polyaspartic acid
pH-responsive release
cytotoxicity
Medicine (General)
R5-920
spellingShingle Cancer chemotherapy
Mesoporous silica nanoparticles
Polyaspartic acid
pH-responsive release
cytotoxicity
Medicine (General)
R5-920
Hakeem A
Zahid F
Zhan G
Yi P
Yang H
Gan L
Yang X
Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
description Abdul Hakeem,1,2,* Fouzia Zahid,1,* Guiting Zhan,1 Ping Yi,3 Hai Yang,1 Lu Gan,1 Xiangliang Yang1 1National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 2Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan; 3Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Background: Nanotechnology-based drug delivery systems exhibit promising therapeutic efficacy in cancer chemotherapy. However, ideal nano drug carriers are supposed to be sufficiently internalized into cancer cells and then release therapeutic cargoes in response to certain intracellular stimuli, which has never been an easy task to achieve.Objective: This study is to design mesoporous silica nanoparticles (MSNs)-based pH-responsive nano drug delivery system that is effectively internalized into cancer cells and then release drug in response to lysosomal/endosomal acidified environment.Methods: We synthesized MSNs by sol-gel method. Doxorubicin (DOX) was encapsulated into the pores as a model drug. Polyaspartic acid (PAsA) was anchored on the surface of mesoporous MSNs (P-MSNs) as a gatekeeper via amide linkage and endowed MSNs with positive charge.Results: In vitro release analysis demonstrated enhanced DOX release from DOX-loaded PAsA-anchored MSNs (DOX@P-MSNs) under endosomal/lysosomal acidic pH condition. Moreover, more DOX@P-MSNs were internalized into HepG2 cells than DOX-loaded MSNs (DOX@MSNs) and free DOX revealed by flow cytometry. Likewise, confocal microscopic images revealed that DOX@P-MSNs effectively released DOX and translocated to the nucleus. Much stronger cytotoxicity of DOX@P-MSNs against HepG2 cells was observed compared with DOX@MSNs and free DOX.Conclusion: DOX@P-MSNs were successfully fabricated and achieved pH-responsive DOX release. We anticipated this nanotherapeutics might be suitable contenders for future in vivo cancer chemotherapeutic applications. Keywords: cancer chemotherapy, mesoporous silica nanoparticles, polyaspartic acid, pH-responsive release, cytotoxicity
format article
author Hakeem A
Zahid F
Zhan G
Yi P
Yang H
Gan L
Yang X
author_facet Hakeem A
Zahid F
Zhan G
Yi P
Yang H
Gan L
Yang X
author_sort Hakeem A
title Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
title_short Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
title_full Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
title_fullStr Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
title_full_unstemmed Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release
title_sort polyaspartic acid-anchored mesoporous silica nanoparticles for ph-responsive doxorubicin release
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/c03b9a1b5c894e83b2130cdf6684ebfe
work_keys_str_mv AT hakeema polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT zahidf polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT zhang polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT yip polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT yangh polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT ganl polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
AT yangx polyasparticacidanchoredmesoporoussilicananoparticlesforphresponsivedoxorubicinrelease
_version_ 1718402731922685952