Machine Translation in Low-Resource Languages by an Adversarial Neural Network
Existing Sequence-to-Sequence (Seq2Seq) Neural Machine Translation (NMT) shows strong capability with High-Resource Languages (HRLs). However, this approach poses serious challenges when processing Low-Resource Languages (LRLs), because the model expression is limited by the training scale of parall...
Guardado en:
Autores principales: | Mengtao Sun, Hao Wang, Mark Pasquine, Ibrahim A. Hameed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c042e7e12b1748c3830acce4f976d5e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Selection of the Right Undergraduate Major by Students Using Supervised Learning Techniques
por: Alhuseen Omar Alsayed, et al.
Publicado: (2021) -
Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network
por: Hyun Kwon, et al.
Publicado: (2018) -
A post COVID Machine Learning approach in Teaching and Learning methodology to alleviate drawbacks of the e-whiteboards
por: Sudan Jha, et al.
Publicado: (2021) -
Selective Untargeted Evasion Attack: An Adversarial Example That Will Not Be Classified as Certain Avoided Classes
por: Hyun Kwon, et al.
Publicado: (2019)