Anomaly detection in video sequences: A benchmark and computational model
Abstract Anomaly detection has attracted considerable search attention. However, existing anomaly detection databases encounter two major problems. Firstly, they are limited in scale. Secondly, training sets contain only video‐level labels indicating the existence of an abnormal event during the ful...
Enregistré dans:
Auteurs principaux: | Boyang Wan, Wenhui Jiang, Yuming Fang, Zhiyuan Luo, Guanqun Ding |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c060f34ff9c543b384db6115e37fb8a6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep social force network for anomaly event detection
par: Xingming Yang, et autres
Publié: (2021) -
Latent label mining for group activity recognition in basketball videos
par: Lifang Wu, et autres
Publié: (2021) -
A deep learning method for video‐based action recognition
par: Guanwen Zhang, et autres
Publié: (2021) -
Crowd activity recognition in live video streaming via 3D‐ResNet and region graph convolution network
par: Junpeng Kang, et autres
Publié: (2021) -
Contrastive learning of graph encoder for accelerating pedestrian trajectory prediction training
par: Zonggui Yao, et autres
Publié: (2021)