Anomaly detection in video sequences: A benchmark and computational model
Abstract Anomaly detection has attracted considerable search attention. However, existing anomaly detection databases encounter two major problems. Firstly, they are limited in scale. Secondly, training sets contain only video‐level labels indicating the existence of an abnormal event during the ful...
Guardado en:
Autores principales: | Boyang Wan, Wenhui Jiang, Yuming Fang, Zhiyuan Luo, Guanqun Ding |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c060f34ff9c543b384db6115e37fb8a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep social force network for anomaly event detection
por: Xingming Yang, et al.
Publicado: (2021) -
Latent label mining for group activity recognition in basketball videos
por: Lifang Wu, et al.
Publicado: (2021) -
A deep learning method for video‐based action recognition
por: Guanwen Zhang, et al.
Publicado: (2021) -
Crowd activity recognition in live video streaming via 3D‐ResNet and region graph convolution network
por: Junpeng Kang, et al.
Publicado: (2021) -
Contrastive learning of graph encoder for accelerating pedestrian trajectory prediction training
por: Zonggui Yao, et al.
Publicado: (2021)