Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations
In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor networ...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c072346fe3664048beaf34da64f4277d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c072346fe3664048beaf34da64f4277d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c072346fe3664048beaf34da64f4277d2021-11-20T04:56:08ZUnraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations1095-957210.1016/j.neuroimage.2021.118710https://doaj.org/article/c072346fe3664048beaf34da64f4277d2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1053811921009824https://doaj.org/toc/1095-9572In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor network effector-dependent and effector-independent? How important is the sensorimotor cortex when predicting the motor effector? Is there redundancy in the distributed somatotopically organized network such that removing one region has little impact on classification accuracy? To answer these questions, we developed a novel experimental approach. fMRI data were collected while human subjects performed a precisely controlled force generation task separately with their hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity altered classification accuracy. Results revealed effector-dependent activity in regions of the post-central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior parietal lobule, and cerebellum each contained effector-dependent and effector-independent representations. Machine learning analyses showed that increasing the spatial resolution of the data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. Our SLIC-based supervoxel parcellation outperformed classification analyses using established brain templates and random simulations. Occlusion experiments further demonstrated redundancy across the sensorimotor network when classifying effectors. Our observations extend our understanding of effector-dependent and effector-independent organization within the human brain and provide new insight into the functional neuroanatomy required to predict the motor effector used in a motor control task.Kyle B. SeeDavid J. ArpinDavid E. VaillancourtRuogu FangStephen A. CoombesElsevierarticleNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENNeuroImage, Vol 245, Iss , Pp 118710- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Kyle B. See David J. Arpin David E. Vaillancourt Ruogu Fang Stephen A. Coombes Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
description |
In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor network effector-dependent and effector-independent? How important is the sensorimotor cortex when predicting the motor effector? Is there redundancy in the distributed somatotopically organized network such that removing one region has little impact on classification accuracy? To answer these questions, we developed a novel experimental approach. fMRI data were collected while human subjects performed a precisely controlled force generation task separately with their hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity altered classification accuracy. Results revealed effector-dependent activity in regions of the post-central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior parietal lobule, and cerebellum each contained effector-dependent and effector-independent representations. Machine learning analyses showed that increasing the spatial resolution of the data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. Our SLIC-based supervoxel parcellation outperformed classification analyses using established brain templates and random simulations. Occlusion experiments further demonstrated redundancy across the sensorimotor network when classifying effectors. Our observations extend our understanding of effector-dependent and effector-independent organization within the human brain and provide new insight into the functional neuroanatomy required to predict the motor effector used in a motor control task. |
format |
article |
author |
Kyle B. See David J. Arpin David E. Vaillancourt Ruogu Fang Stephen A. Coombes |
author_facet |
Kyle B. See David J. Arpin David E. Vaillancourt Ruogu Fang Stephen A. Coombes |
author_sort |
Kyle B. See |
title |
Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
title_short |
Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
title_full |
Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
title_fullStr |
Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
title_full_unstemmed |
Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
title_sort |
unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/c072346fe3664048beaf34da64f4277d |
work_keys_str_mv |
AT kylebsee unravelingsomatotopicorganizationinthehumanbrainusingmachinelearningandadaptivesupervoxelbasedparcellations AT davidjarpin unravelingsomatotopicorganizationinthehumanbrainusingmachinelearningandadaptivesupervoxelbasedparcellations AT davidevaillancourt unravelingsomatotopicorganizationinthehumanbrainusingmachinelearningandadaptivesupervoxelbasedparcellations AT ruogufang unravelingsomatotopicorganizationinthehumanbrainusingmachinelearningandadaptivesupervoxelbasedparcellations AT stephenacoombes unravelingsomatotopicorganizationinthehumanbrainusingmachinelearningandadaptivesupervoxelbasedparcellations |
_version_ |
1718419737872957440 |