Deep learning for automated sleep staging using instantaneous heart rate
Abstract Clinical sleep evaluations currently require multimodal data collection and manual review by human experts, making them expensive and unsuitable for longer term studies. Sleep staging using cardiac rhythm is an active area of research because it can be measured much more easily using a wide...
Guardado en:
Autores principales: | Niranjan Sridhar, Ali Shoeb, Philip Stephens, Alaa Kharbouch, David Ben Shimol, Joshua Burkart, Atiyeh Ghoreyshi, Lance Myers |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c084e2967b6a460f92c88b5f74ed96b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Deep learning for automated sleep staging using instantaneous heart rate
por: Niranjan Sridhar, et al.
Publicado: (2020) -
U-Sleep: resilient high-frequency sleep staging
por: Mathias Perslev, et al.
Publicado: (2021) -
The future of sleep health: a data-driven revolution in sleep science and medicine
por: Ignacio Perez-Pozuelo, et al.
Publicado: (2020) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Khaled Saab, et al.
Publicado: (2020) -
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Viktor Tóth, et al.
Publicado: (2020)