Deep learning for automated sleep staging using instantaneous heart rate
Abstract Clinical sleep evaluations currently require multimodal data collection and manual review by human experts, making them expensive and unsuitable for longer term studies. Sleep staging using cardiac rhythm is an active area of research because it can be measured much more easily using a wide...
Enregistré dans:
Auteurs principaux: | Niranjan Sridhar, Ali Shoeb, Philip Stephens, Alaa Kharbouch, David Ben Shimol, Joshua Burkart, Atiyeh Ghoreyshi, Lance Myers |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c084e2967b6a460f92c88b5f74ed96b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Deep learning for automated sleep staging using instantaneous heart rate
par: Niranjan Sridhar, et autres
Publié: (2020) -
U-Sleep: resilient high-frequency sleep staging
par: Mathias Perslev, et autres
Publié: (2021) -
The future of sleep health: a data-driven revolution in sleep science and medicine
par: Ignacio Perez-Pozuelo, et autres
Publié: (2020) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
par: Khaled Saab, et autres
Publié: (2020) -
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
par: Viktor Tóth, et autres
Publié: (2020)