Transferable Deep Learning from Time Series of Landsat Data for National Land-Cover Mapping with Noisy Labels: A Case Study of China
Large-scale land-cover classification using a supervised algorithm is a challenging task. Enormous efforts have been made to manually process and check the production of national land-cover maps. This has led to complex pre- and post-processing and even the production of inaccurate mapping products...
Enregistré dans:
| Auteurs principaux: | Xuemei Zhao, Danfeng Hong, Lianru Gao, Bing Zhang, Jocelyn Chanussot |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/c09579ddb984493782dd2cff7140ba9d |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
par: Pablo Gomez, et autres
Publié: (2021) -
Improving the Accuracy of Land Cover Mapping by Distributing Training Samples
par: Chenxi Li, et autres
Publié: (2021) -
Correlation Analysis between Land-Use/Cover Change and Coastal Subsidence in the Yellow River Delta, China: Reviewing the Past and Prospecting the Future
par: Yi Zhang, et autres
Publié: (2021) -
AGRICULTURAL ACTIVITIES LAND COVER CHANGE EFFECT IN KAZ (IDA) MOUNTAINS NATIONAL PARK (1975-2005)
par: Mehmet ÖZCANLI
Publié: (2019) -
Effect of Using Different Amounts of Multi-Temporal Data on the Accuracy: A Case of Land Cover Mapping of Parts of Africa Using FengYun-3C Data
par: Tesfaye Adugna, et autres
Publié: (2021)