Einstein-Podolsky-Rosen Steering for Mixed Entangled Coherent States

By using the Born Markovian master equation, we study the relationship among the Einstein–Podolsky–Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for vario...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sayed Abdel-Khalek, Kamal Berrada, Mariam Algarni, Hichem Eleuch
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/c095865b235f404ba5bcec652b259fcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:By using the Born Markovian master equation, we study the relationship among the Einstein–Podolsky–Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for various optical field strength regimes. In general, we find that correlation measurements begin at their maximum and decline over time. We find that quantum steering and nonlocality behave similarly in terms of photon number during dynamics. Furthermore, we discover that ECSs with steerability can violate the Bell inequality, and that not every ECS with Bell nonlocality is steerable. In the current work, without the memory stored in the environment, some of the initial states with maximal values of quantum steering, Bell nonlocality, and entanglement can provide a delayed loss of that value during temporal evolution, which is of interest to the current study.