Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth
An increase in genomic selection (GS) accuracy can accelerate genetic gain by shortening the breeding cycles. Here, the authors introduce a network-based GS method that uses metabolic models and improves the prediction accuracy of Arabidopsis growth within and across environments.
Guardado en:
Autores principales: | Hao Tong, Anika Küken, Zoran Nikoloski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c09ac547bc15471191fabea3a6d70bb4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A structural property for reduction of biochemical networks
por: Anika Küken, et al.
Publicado: (2021) -
Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism
por: Christopher Pries, et al.
Publicado: (2021) -
Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
por: Michael Scheunemann, et al.
Publicado: (2018) -
Resolving the central metabolism of Arabidopsis guard cells
por: Semidán Robaina-Estévez, et al.
Publicado: (2017) -
Structural control of metabolic flux.
por: Max Sajitz-Hermstein, et al.
Publicado: (2013)