Shared volatile organic compounds between camel metabolic products elicits strong Stomoxys calcitrans attraction

Abstract The sources of animal odours are highly diverse, yet their ecological importance, in host–vector communication, remains unexplored. Here, using the camel (host)–Stomoxys calcitrans (vector) interaction, we collected and analyzed the Volatile Organic Compounds (VOCs) of camels from four of i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Merid Negash Getahun, Peter Ahuya, John Ngiela, Abel Orone, Daniel Masiga, Baldwyn Torto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c0a5c90e90f74bf1b91cff4c13bb0d64
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The sources of animal odours are highly diverse, yet their ecological importance, in host–vector communication, remains unexplored. Here, using the camel (host)–Stomoxys calcitrans (vector) interaction, we collected and analyzed the Volatile Organic Compounds (VOCs) of camels from four of its different odour sources: breath, body (skin), urine, and dung. On non-metric model multivariate analyses of VOCs we show that substantial chemo-diversity exists between metabolic products associated with an individual camel. VOCs from the four metabolic products were distinct and widely segregated. Next, we show electrophysiologically, that VOCs shared between metabolic products activated more Olfactory Sensory Neurons (OSNs) and elicited strong behavioural attractive responses from S. calcitrans under field conditions independent of geography. In our extended studies on house flies, the behavioural response to these VOCs appears to be conserved. Overall, our results establish that VOCs from a range of metabolic products determine host–vector ecological interactions and may provide a more rigorous approach for discovery of unique and more potent attractants.