The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress

Abstract As the important source of natural fibers in the textile industry, cotton fiber quality and yield are often restricted to drought conditions because most of cotton plants in the world grow in the regions with water shortage. WRKY transcription factors regulate multiple plant physiological p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Na-Na Wang, Shang-Wei Xu, Yun-Lue Sun, Dong Liu, Li Zhou, Yang Li, Xue-Bao Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c0acd04e54044d389d4daa0c12c6c89a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract As the important source of natural fibers in the textile industry, cotton fiber quality and yield are often restricted to drought conditions because most of cotton plants in the world grow in the regions with water shortage. WRKY transcription factors regulate multiple plant physiological processes, including drought stress response. However, little is known of how the WRKY genes respond to drought stress in cotton. Our previous study revealed GhWRKY33 is leaf-specific and induced by drought stress. In this study, our data showed GhWRKY33 protein localizes to the cell nucleus and is able to bind to “W-box” cis-acting elements of the target promoters. Under drought stress, GhWRKY33 overexpressing transgenic Arabidopsis was withered much more quickly than wild type due to faster water loss. Moreover, GhWRKY33 transgenic plants displayed more tolerance to abscisic acid (ABA), relative to wild type. Expression of some drought stress-related genes and ABA-responsive genes were changed in the GhWRKY33 transgenic Arabidopsis with drought or ABA treatment. Collectively, our findings indicate that GhWRKY33 may act as a negative regulator to mediate plant response to drought stress and to participate in the ABA signaling pathway.