Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.

Ocean acidification and warming are challenging marine organisms and ecosystems around the world. The synergetic effects of these two climate change stressors on jellyfish remain still understudied. Here, we examine the independent and combined effects of these two environmental variables on polyp p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angélica Enrique-Navarro, I Emma Huertas, Manuel Jesús León Cobo, Laura Prieto
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c0ba97d7e8854889ae4e0c0c6e572b4a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c0ba97d7e8854889ae4e0c0c6e572b4a
record_format dspace
spelling oai:doaj.org-article:c0ba97d7e8854889ae4e0c0c6e572b4a2021-12-02T20:18:45ZImpact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.1932-620310.1371/journal.pone.0254983https://doaj.org/article/c0ba97d7e8854889ae4e0c0c6e572b4a2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254983https://doaj.org/toc/1932-6203Ocean acidification and warming are challenging marine organisms and ecosystems around the world. The synergetic effects of these two climate change stressors on jellyfish remain still understudied. Here, we examine the independent and combined effects of these two environmental variables on polyp population dynamics of the Mediterranean jellyfish Cotylorhiza tuberculata. An experiment was conducted to examine asexual reproduction by budding and strobilation considering current and ca. 2100 winter (Trial 1, 36 days) and summer (Trial 2, 36 days) conditions under the RCP8.5 (IPCC 2013). In Trial 1, a temperature of 18°C and two pH levels (current: 7.9 and, reduced: 7.7) were tested. Trial 2 considered two temperature levels 24°C and 30°C, under current and reduced acidification conditions (8.0 and 7.7, respectively). Ephyrae size and statolith formation of released ephyrae from polyps exposed to summer temperatures under both acidification treatment was also analyzed. Zooxanthellae density inside the polyps throughout the experiment was measured. C. tuberculata polyps could cope with the conditions mimicked in all experimental treatments and no significant effect of pH, temperature, or the combination of both variables on the abundance of polyps was observed. At 18°C, strobilation was reduced under high PCO2 conditions. Under summer treatments (24°C and 30°C), percentage strobilation was very low and several released ephyrae suffered malformations and reduced size, as a consequence of reduced pH and elevated temperatures, separately. The number of statoliths was not affected by pH or temperature, however, bigger statoliths were formed at elevated temperatures (30°C). Finally, zooxanthellae density was not affected by experimental conditions, even if, the duration of the experiment significantly affected symbiont concentration. Our results show that even though polyps of C. tuberculata would thrive the future worst scenario predicted for the Mediterranean Sea, their capacity to undergo a proper strobilation and to produce healthy ephyrae will be more vulnerable to climate induced environmental conditions, thereby affecting medusae recruitment and, therefore, population dynamics of the species.Angélica Enrique-NavarroI Emma HuertasManuel Jesús León CoboLaura PrietoPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0254983 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Angélica Enrique-Navarro
I Emma Huertas
Manuel Jesús León Cobo
Laura Prieto
Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
description Ocean acidification and warming are challenging marine organisms and ecosystems around the world. The synergetic effects of these two climate change stressors on jellyfish remain still understudied. Here, we examine the independent and combined effects of these two environmental variables on polyp population dynamics of the Mediterranean jellyfish Cotylorhiza tuberculata. An experiment was conducted to examine asexual reproduction by budding and strobilation considering current and ca. 2100 winter (Trial 1, 36 days) and summer (Trial 2, 36 days) conditions under the RCP8.5 (IPCC 2013). In Trial 1, a temperature of 18°C and two pH levels (current: 7.9 and, reduced: 7.7) were tested. Trial 2 considered two temperature levels 24°C and 30°C, under current and reduced acidification conditions (8.0 and 7.7, respectively). Ephyrae size and statolith formation of released ephyrae from polyps exposed to summer temperatures under both acidification treatment was also analyzed. Zooxanthellae density inside the polyps throughout the experiment was measured. C. tuberculata polyps could cope with the conditions mimicked in all experimental treatments and no significant effect of pH, temperature, or the combination of both variables on the abundance of polyps was observed. At 18°C, strobilation was reduced under high PCO2 conditions. Under summer treatments (24°C and 30°C), percentage strobilation was very low and several released ephyrae suffered malformations and reduced size, as a consequence of reduced pH and elevated temperatures, separately. The number of statoliths was not affected by pH or temperature, however, bigger statoliths were formed at elevated temperatures (30°C). Finally, zooxanthellae density was not affected by experimental conditions, even if, the duration of the experiment significantly affected symbiont concentration. Our results show that even though polyps of C. tuberculata would thrive the future worst scenario predicted for the Mediterranean Sea, their capacity to undergo a proper strobilation and to produce healthy ephyrae will be more vulnerable to climate induced environmental conditions, thereby affecting medusae recruitment and, therefore, population dynamics of the species.
format article
author Angélica Enrique-Navarro
I Emma Huertas
Manuel Jesús León Cobo
Laura Prieto
author_facet Angélica Enrique-Navarro
I Emma Huertas
Manuel Jesús León Cobo
Laura Prieto
author_sort Angélica Enrique-Navarro
title Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
title_short Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
title_full Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
title_fullStr Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
title_full_unstemmed Impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish Cotylorhiza tuberculata.
title_sort impact of ocean warming and ocean acidification on asexual reproduction and statolith formation of the symbiotic jellyfish cotylorhiza tuberculata.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/c0ba97d7e8854889ae4e0c0c6e572b4a
work_keys_str_mv AT angelicaenriquenavarro impactofoceanwarmingandoceanacidificationonasexualreproductionandstatolithformationofthesymbioticjellyfishcotylorhizatuberculata
AT iemmahuertas impactofoceanwarmingandoceanacidificationonasexualreproductionandstatolithformationofthesymbioticjellyfishcotylorhizatuberculata
AT manueljesusleoncobo impactofoceanwarmingandoceanacidificationonasexualreproductionandstatolithformationofthesymbioticjellyfishcotylorhizatuberculata
AT lauraprieto impactofoceanwarmingandoceanacidificationonasexualreproductionandstatolithformationofthesymbioticjellyfishcotylorhizatuberculata
_version_ 1718374248856158208