CFAR Algorithm Based on Different Probability Models for Ocean Target Detection
The two-parameter constant false alarm rate (CFAR) detection algorithm uses the background average <inline-formula> <tex-math notation="LaTeX">$u_{b}$ </tex-math></inline-formula> and the standard deviation <inline-formula> <tex-math notation="LaTeX&qu...
Guardado en:
Autores principales: | Wanwu Li, Jixian Zhang, Lin Liu, Jiaxing Zhou, Qiaoli Sui, Hang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c0c9895900f341a3ba28e59e2cf4fe96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Logo Detection With No Priors
por: Diego A. Velazquez, et al.
Publicado: (2021) -
An Algorithm for Fitting Sphere Target of Terrestrial LiDAR
por: Yintao Shi, et al.
Publicado: (2021) -
An Adaptive Change Threshold Selection Method Based on Land Cover Posterior Probability and Spatial Neighborhood Information
por: Huaqiao Xing, et al.
Publicado: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
por: Sudipan Saha, et al.
Publicado: (2021)