Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response

Identifying ligands which activate the specific effectors driving particular in vivo drug effects remains challenging. Here, the authors apply unsupervised clustering of pharmacodynamic parameters to classify GPCR ligands into different categories with similar signaling profiles and shared frequency...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Besma Benredjem, Jonathan Gallion, Dennis Pelletier, Paul Dallaire, Johanie Charbonneau, Darren Cawkill, Karim Nagi, Mark Gosink, Viktoryia Lukasheva, Stephen Jenkinson, Yong Ren, Christopher Somps, Brigitte Murat, Emma Van Der Westhuizen, Christian Le Gouill, Olivier Lichtarge, Anne Schmidt, Michel Bouvier, Graciela Pineyro
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c0db3f1cf110426bbd5f35d40fd3681b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Identifying ligands which activate the specific effectors driving particular in vivo drug effects remains challenging. Here, the authors apply unsupervised clustering of pharmacodynamic parameters to classify GPCR ligands into different categories with similar signaling profiles and shared frequency of report of side effects.